Selective Bottlenecks Shape Evolutionary Pathways Taken during Mammalian Adaptation of a 1918-like Avian Influenza Virus.
نویسندگان
چکیده
Avian influenza virus reassortants resembling the 1918 human pandemic virus can become transmissible among mammals by acquiring mutations in hemagglutinin (HA) and polymerase. Using the ferret model, we trace the evolutionary pathway by which an avian-like virus evolves the capacity for mammalian replication and airborne transmission. During initial infection, within-host HA diversity increased drastically. Then, airborne transmission fixed two polymerase mutations that do not confer a detectable replication advantage. In later transmissions, selection fixed advantageous HA1 variants. Transmission initially involved a "loose" bottleneck, which became strongly selective after additional HA mutations emerged. The stringency and evolutionary forces governing between-host bottlenecks may therefore change throughout host adaptation. Mutations occurred in multiple combinations in transmitted viruses, suggesting that mammalian transmissibility can evolve through multiple genetic pathways despite phenotypic constraints. Our data provide a glimpse into avian influenza virus adaptation in mammals, with broad implications for surveillance on potentially zoonotic viruses.
منابع مشابه
Novel origin of the 1918 pandemic influenza virus nucleoprotein gene.
The nucleoprotein (NP) gene of the 1918 pandemic influenza A virus has been amplified and sequenced from archival material. The NP gene is known to be involved in many aspects of viral function and to interact with host proteins, thereby playing a role in host specificity. The 1918 NP amino acid sequence differs at only six amino acids from avian consensus sequences, consistent with reassortmen...
متن کاملتغییرات ژنتیکی ویروس و فرار از سامانه ایمنی، چالشهای پیشرو علیه آنفلوآنزا: مقاله مروری
The spread of influenza viruses in multiple bird and mammalian species is a worldwide serious threat to human and animal populations' health and raise major concern for ongoing pandemic in humans. Direct transmission of the avian viruses which have sialic acid specific receptors similar to human influenza viruses are a warning to the emergence of a new mutant strain that is likely to share mole...
متن کاملContemporary Avian Influenza A Virus Subtype H1, H6, H7, H10, and H15 Hemagglutinin Genes Encode a Mammalian Virulence Factor Similar to the 1918 Pandemic Virus H1 Hemagglutinin
UNLABELLED Zoonotic avian influenza virus infections may lead to epidemics or pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its H1 hemagglutinin was identified as a key mammalian virulence factor. A chimeric 1918 virus expressing a contemporary avian H1 hemagglutinin, however, displayed murine pathogenicity indistinguishable from that of the 1918 vir...
متن کاملPandemic influenza viruses--hoping for the road not taken.
ter analogous evolutionary divergence points, and they may not all take linear paths to inevitable outcomes. For instance, a novel avian influenza A (H7N9) virus has emerged in China.1 Because all known pandemic and other human, mammalian, and poultry influenza A viruses have descended from wild-bird viruses, it seems logical that any avian influenza A virus that becomes pandemic must have seri...
متن کاملDifferent evolutionary trajectories of European avian-like and classical swine H1N1 influenza A viruses.
In 1979, a lineage of avian-like H1N1 influenza A viruses emerged in European swine populations independently from the classical swine H1N1 virus lineage that had circulated in pigs since the Spanish influenza pandemic of 1918. To determine whether these two distinct lineages of swine-adapted A/H1N1 viruses evolved from avian-like A/H1N1 ancestors in similar ways, as might be expected given the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell host & microbe
دوره 19 2 شماره
صفحات -
تاریخ انتشار 2016